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Abstract

The aquaculture sector is currently experiencing a global disease crisis. Emerging bac-

terial diseases—often opportunistic or syndromic—have collapsed production in

nations across the world. Losses in the shrimp industry associated with opportunistic

Vibrio spp. exceed 40% of global capacity. This paper reviews potential drivers of syn-

dromic diseases involving opportunistic bacterial pathogens affecting global aquacul-

ture. We provide key examples from major industries where such conditions have

prompted greater antibiotic use and have resulted in significant mortality. We chal-

lenge the conventional definitions of opportunistic pathogens and propose a fluid

categorisation that acknowledges the continuum of host adaptation and the com-

plexity of microbial ecology. We discuss the implications of environmental and die-

tary stressors such as climate change, coastal eutrophication and pollution, and the

transition to plant-based feeds, which have been linked to impaired epithelial barrier

function, gut health disorders and increased disease susceptibility. We critique the

‘one-pathogen one-disease’ paradigm, suggesting that Rothman's causal pie model is

more useful for understanding opportunistic infections as it emphasises the multicau-

sal nature of disease. We provide examples of bacterial and viral interactions in

aquatic disease and occurrence of bacterial diseases resulting from host damage from

eukaryotic parasites or increasing frequency and severity of interventions to control

such parasites. We recognise the need for corroborative evidence to validate the rise

of opportunistic bacterial pathogens as a global trend, and we advocate for the appli-

cation of nuanced disease causation models to reduce the incidence of opportunistic

infections and improve the sustainability of the aquaculture industry.
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1 | THE RISE OF THE OPPORTUNISTS

Climate change, anthropogenic stressors and the rapid intensification

of the aquaculture sector have resulted in a global disease crisis.1,2

Shifts in climate patterns and the increased frequency of extreme

weather events are altering the incidence, severity and geographic

distributions of disease outbreaks,3,4 with much of the risk of emerg-

ing disease concentrated in tropical and subtropical aquaculture

regions where industry growth and need is greatest.5,6

Most emerging and re-emerging diseases have cryptic or syndro-

mic aetiology, with growing consensus that the shrimp industry is

experiencing a ‘rise of the syndrome’, characterised by the surge in

sub-optimal growth disorders (reviewed in the study by Kooloth

Valappil et al.7). The emergence of ‘monodon slow growth syndrome’
in Penaeus monodon was first noted in Thailand between 2001 and

2002,8 with severe cases leading to 30% of farmed stock with signifi-

cantly low average body weights. Similar disease presentations of

unusual slow growth and wide size variations have been recorded in

India9 and East Africa.10 Sub-optimal growth disorders in P. monodon

have been cited as a reason for changing the farmed species to Litope-

naeus vannamei in Thailand.7 Similarly, the emergence and re-

emergence of complex bacterial septicaemic syndromes in Norwegian

salmonid aquaculture has resulted in increased antibiotic consumption

in the period between 2015 and 2022 in an industry where the need

for antimicrobials had been largely eliminated through vaccination

programmes since the early 1990s.11,12 Indeed, mortality of farmed

salmon during grow-out phase reached an average of 16.1% in 2022,

increasing to 16.7% in 2023, with the highest mortality production

zone reaching 23.7% in 2022 and 25.5% in 2023.13,14 Mortality fig-

ures in 2023, both in number and percentage, are the highest

recorded so far for salmon in the grow-out phase in Norway. These

elevated mortalities are associated with the development of disease

syndromes including winter ulcer disease and complex gill disease.

Winter ulcer disease, caused by Moritella viscosa and/or Tenacibacu-

lum spp., constitutes the biggest health and welfare challenge related

to bacterial diseases in Norwegian aquaculture. Skin wounds are not

subject to notification and there are no precise figures, but their diag-

nosis has increased and there is widespread perception in the industry

that the prevalence of winter ulcer disease across the country has

worsened significantly in recent years.15,16 In the tropics and subtrop-

ics, many of the bacterial diseases of tilapia (Oreochromis niloticus)

described in recent reviews could be classed as opportunistic,17,18

including those caused by motile Aeromonas, Flexibacter, Edwardsiella

and Streptococcus.

2 | WHAT IS AN OPPORTUNIST?

Defining opportunistic bacterial pathogens is not straightforward. A

good starting point is the simple ecological definition proposed by

Brown et al.19 viz. opportunistic pathogens are non-obligate and/or

non-specialist parasites of a focal host.19 Here, the term parasites

refers to organisms, in this case bacteria, characterised by their

fitness-reducing effect on their host.20 Further subcategorization of

the definition of obligate pathogens as proposed by Brown et al. is

useful in evolutionary modelling of human clinical disease (Figure 2a)

but becomes much more difficult in aquatic ecosystems. With possibly

48,000 extant species of fish, even highly host-adapted bacterial path-

ogens may cause disease in multiple species, therefore defining a focal

host akin to ‘human’ is constraining. For aquatic disease models, we

propose that obligate bacterial parasites are placed on a continuum of

increasing host adaptation from broad generalists to single species

specialists such as some viruses and helminth parasites (Figure 2b).

Similarly, the differentiation of environmental and commensal oppor-

tunists proposed by Brown et al.19 is much more fluid in aquatic sys-

tems where animals live immersed in richly diverse microbial

ecosystems and drink them continuously. For example, Tenacibaculum

maritimum is often found in the skin mucosae of non-diseased marine

fish, invertebrates and mammals,21–24 but is also found in sediments

and seawater.23,25 We cannot, therefore, define T. maritimum as an

environmental or commensal opportunist, but rather as both. Similarly,

members of the genera Photobacterium and Vibrio are the most abun-

dant facultatively anaerobic heterotrophs found in the digestive tract

of marine fish and invertebrates,26,27 yet are also ubiquitous in marine

waters and phytoplankton.28–30 Consequently, a more fluid categori-

sation of opportunists is proposed to reflect the complexity of aquatic

microbial ecology, in which obligate bacterial parasites exist along a

continuum of specialisation, whilst facultative bacterial parasites can

be interchangeably environmental and commensal opportunists

(Figure 2b).

3 | UNEQUAL OPPORTUNITIES

Even in the aquaculture community, there is robust discussion over

whether certain pathogens are opportunists or specialists.31–33 This is

unsurprising as within a species of bacterial opportunists there exists

a non-static parasite-mutualist continuum where some strains or iso-

lates will have, or develop, greater potential to damage the host than

others via horizontal gene transfer (HGT) or phenotypic plasticity

driven by host or environmental conditions.34 Evolution along this

continuum may increase or decrease virulence and, at its most

extreme, highly host-adapted primary pathogens may arise from com-

mensal opportunists. For example, in an evolutionary trajectory mir-

roring the evolution of the plague bacterium Yersinia pestis from the

environmental generalist Yersinia pseudotuberculosis, highly virulent

Photobacterium damselae subspecies piscicida evolved from a subclade

of the commensal opportunist P. damselae subspecies damselae

through a combination of chromosomal gene loss and acquisition of

plasmids.35 In the case of opportunists, the presence of a plasmid or

an additional gene copy may increase the potential for a strain to

cause disease but may be insufficient on its own. For example, there

are strains of Vibrio harveyi and P. damselae subsp. damselae with

greater potential for disease, influenced by phage and plasmids

respectively but there are generally other causalities required for

overt disease.36–39 More subtly, phenotypic plasticity of the pathogen
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may contribute to outbreaks of disease when environmental condi-

tions such as salinity40 or temperature41,42 modulate gene expression

in P. damselae and Lactococcus garvieae, respectively.

4 | RETHINKING DISEASE CAUSATION
MODELS

While historic focus on a ‘one-pathogen one-disease model’ for specific
(listed) pathogens has undeniably been critical in alerting the community

of emerging issues, this pathogen-centred approach, based on Koch's

postulates and germ-theory from the 19th century, has constrained

research to specific facets of those pathogens, at the expense of investi-

gating the very context in which they occur (host, microbiomes and envi-

ronment).2 Even Koch had to bend the strictest interpretation of his first

postulate (pathogens are only found in diseased, but not healthy individ-

uals) when he discovered asymptomatic carriers of Vibrio cholera.

A familiar model of disease causation is the disease triad43

(Figure 2). This model elegantly encapsulates disease causation within

a tripartite Venn Diagram intersecting host, pathogen and environ-

ment (Figure 3a). While this model can still be used to delineate the

aetiology of diseases caused by highly host-adapted pathogens, it falls

short in addressing the multifaceted interactions that characterise dis-

eases arising from opportunistic pathogens. Such complex scenarios

demand more nuanced frameworks that can dissect and illustrate the

causal factors culminating in clinical disease.

Rothman's causal pie model44 (Figure 3b), provides a fitting

framework for diseases caused by opportunistic pathogens. This

model accommodates the concept that diseases, particularly those

with syndromic aetiologies, may result from diverse causal mecha-

nisms, each involving multiple contributory factors. The model's

strength lies in its emphasis on multicausality, whereby a sufficient

cause of disease is a constellation of component causes, the causal

pie, that leads to an outcome, and a component cause can be a com-

ponent of more than one causal pie.44 For example, exposure to

someone who has tuberculosis (TB) does not necessarily result in the

occurrence of TB. Moreover, the set of determinants that produce TB

in one individual may not be the same set of conditions that were

responsible for the occurrence of TB in others. In this conceptual

model, the pathogen (e.g., Mycobacterium tuberculosis) is considered a

necessary cause—a component cause that is essential for the manifes-

tation of a disease, yet not solely capable of inducing the disease as a

sufficient cause without the concurrent presence of other contribut-

ing factors. For instance, syndromes such as AHPND or winter ulcer

disease may implicate Vibrio parahaemolyticus or M. viscosa, respec-

tively, as primary agents. However, the full expression of the disease,

which often presents as a continuum within a population, requires

additional component causes.7,15

A disease that can be explained using the causal pie model frame-

work is Pacific Oyster Mortality Syndrome (POMS) caused by ostreid

herpesvirus 1 (OsHV-1). In a very elegant study using field-based

observations and controlled laboratory infection models, Oyanedel

et al.45 demonstrated that POMS is a polymicrobial disease

characterised by a web of interdependencies and synergies between

the virus (OsHV-1) and associated Vibrio spp. (V. harveyi and

V. rotiferianus). The authors of this study demonstrate that both the

viral and bacterial components of POMS are needed to induce oyster

mortality, and the combined effects of these agents triggered faster

host death than that observed when the microorganisms were used in

isolation. In other words, the causal pie model for POMS includes at

least the viral (OsHV-1) and bacterial components (certain Vibrio spp.),

in addition to host and environmental risk factors. The complexity of

the microbial interactions in POMS can be captured in the patho-

biome conceptual model proposed by Bass et al.46 Strategies to miti-

gate this disease could therefore consider Vibrio-specific control

strategies, such as vibriophages47 or quorum-quenching molecules48

to disarm bacterial communication, or the priming of the oyster's

immune system with OsHV-1 antigen (de Kantzow et al.49). Decipher-

ing the complex causal relationship of opportunistic infections by

assembling the causal pie model will allow us to establish targeted

preventive approaches to mitigate their impact on the health and wel-

fare of aquatic animals.

5 | CHALLENGES CONTRIBUTING TO THE
RISE OF THE OPPORTUNISTS

A confluence of challenges is contributing to the rise of opportunistic

infections affecting global aquaculture. These challenges include envi-

ronmental, dietary, production intensification and emerging viral dis-

ease challenges. One of the common denominators is that most of

them have a direct or indirect impact on host immunity, including the

first line of defence of aquatic organisms, the mucosal epithelial bar-

riers in the gut, skin and gills.

Influenced by climate change, coastal marine and estuarine envi-

ronments are experiencing higher average temperatures, greater fre-

quency of extreme temperature events and altered salinities.50 These

changes generate stress in aquatic organisms, reducing immunocom-

petency and increasing disease susceptibility. Increased water temper-

atures have a profound impact on skin barrier functions51 and may

induce dysbiosis by increasing the load of opportunistic pathogens in

the Vibrionacea family.52 Higher water temperatures also increase Vib-

rio loads in the water, with the taxa being labelled the ‘microbial

barometer of climate change’.53 Importantly, there is evidence of a

tight interaction between temperature and antimicrobial resistance in

aquaculture.6 Climatic factors, alongside the escalating eutrophication

of coastal zones, have also amplified the incidence of harmful algal

blooms, with recent catastrophic losses in the salmon industry in

Chile.54 These blooms are also implicated in the rise of complex gill

disease disorders,55 occasionally resulting in devastating outcomes for

farmed fish populations.

Environmental pollution is one of the most serious problems

affecting human and animal health.56 In humans, death by non-

communicable diseases attributable to pollution has been estimated

to reach 20%–25%.57 There is now compelling evidence that environ-

mental pollutants and xenobiotics disrupt the immune system and

SAMSING and BARNES 3
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critical epithelial barrier functions in both mammals and fish. Epithelial

barriers are an intricately complex interface between the animal and

its environment, fulfilling multiple roles in homeostasis, highly selec-

tive transport and permeability, as well as defence. Disruption of epi-

thelial barriers leading to leakiness underly most chronic and

debilitating illnesses in humans.58 Surfactants used as emulsifiers in

processed foods (and extruded feeds),59–61 in dishwasher deter-

gents62 or as wetting agents in agricultural pesticides63 are responsi-

ble for epithelial damage, leaky gut and autoimmune disease in

humans. Aquatic animals are particularly exposed to a high variety of

pollutants including pesticides, herbicides, medicines, surfactants and

other products through wastewater, agricultural practices and run-off

that impact our shared water resources (Figure 1).

An important xenobiotic receptor that mediates the effects of

environmental pollutants is the aryl hydrocarbon receptor (AhR)

(reviewed by the study by Segner et al.64 and Suzuki et al.56). Xenobi-

otic receptors, including the AhR, sense and respond to environmental

pollutants by activating the expression of detoxification enzymes to

protect the body, but chronic activation of this receptor leads

to inflammation and immunotoxicity. The immunological role of the

AhR is particularly relevant in epithelial barriers like the skin or the gut

as they are the first sites where the immune system encounters with

exogenous AhR ligands. Xenobiotics that act as agonists of the AhR

can interfere with immune functions, including disturbance of the

intestinal microbiome and gut health. A study in adult zebrafish

exposed to model pollutants (atrazine, estradiol and polychlorinated

biphenyls) determined that xenobiotics can impair intestinal and

hepatic physiological activities, including gut motility, epithelial per-

meability, inflammation and oxidative stress, inducing the dysregula-

tion of the intestinal microbiota, and this process involved the AhR

and, to a lesser extent, the oestrogen receptor.65

Meticulous epidemiological investigations of a cryptic mortality

syndrome affecting lobsters were recently attributed to environmen-

tal xenobiotics.66 The study prompted the revision of Sniezko's dis-

ease triad to a tetrad model that places anthropogenic inputs into

their own category, separate from the environment.66 This is very

useful as it not only raises awareness of the effects of aquatic pollu-

tion on animal health but also identifies possibilities for mitigation.

There is increasing evidence of pollutants being contributory causes

to aquatic animal disease, including fish, oysters, crustaceans, algae

and corals through both acute and subacute effects at concentrations

that can be well below recommended safety limits.67–70 Exposure of

farm fish to agricultural pesticides may also occur through feed ingre-

dients with the move to increased inclusion of vegetable proteins.

Indeed mixtures of contaminants in fish feeds have been shown to

impact Atlantic salmon.71 A revision of permissible pesticide and sur-

factant residue levels in water and feed ingredients is urgently needed

as more data on subacute and contributory cause become available.

Dietary challenges are also contributing to the rise of the oppor-

tunist and to reduced disease resilience in aquaculture species. In

response to sustainability concerns and the cost of marine-derived

feed ingredients, the last decade has seen the aquaculture sector

pivot towards plant-based feeds, diminishing the inclusion of fishmeal

(FM) and fish oil (FO) in the diets of carnivorous species of high eco-

nomic value.72 In Norway, the use of FM and FO in Atlantic salmon

diets has decreased from 90% (65% FM, 24% FO) to less than 30%

(14% FM, 10% FO) in the last few decades.73 This transition has been

linked with the emergence of gut health disorders, notably increased

inflammatory conditions and intestinal permeability, termed ‘leaky gut

syndrome’. Anti-nutritional factors, such as saponins in legume meals,

induce gut inflammation, tight junction disruption and oxidative dam-

age, leading to increased gut permeability.74–76 Soybean-induced

enteritis has been in fact adopted as a model to study inflammatory

responses in the gastrointestinal tract of carnivorous fish.75 In fish fed

low levels of essential omega-3 fatty acids, EPA and DHA, present in

FM and FO, inflammation and impacts on gut histomorphology are

further exacerbated under chronic stress conditions.77 In contrast,

increasing dietary levels of EPA and DHA improve growth, welfare,

robustness and fillet quality of Atlantic salmon, and even improve feed

utilisation during stressful events such as delousing.78 Authors of this

study suggest that current inclusions levels of EPA and DHA in the

diet of Atlantic salmon should be revised to improve disease

resilience.

Dietary challenges render hosts more susceptible to opportunistic

pathogens.79,80 However, what is even more concerning is that

inflammatory conditions in the gut can favour the emergence of viru-

lent bacterial strains from commensal symbionts. Experiments with

clones of commensal Escherichia coli in the intestines of young and

ageing mice provided direct evidence that inflammatory conditions in

the gut favour evolution of more pathogenic strains.81 In complex,

open microbial communities such as those found in the gut, these

inflammatory conditions may, therefore, contribute to the rise of

opportunistic infections and the emergence of virulent strains from

commensal symbionts by favouring HGT, which is a major driver of

the evolution of symbiotic relationships.82,83

The rapid intensification of the aquaculture industry has been the

source of anthropogenic change on a massive scale. Aquatic animals

have been displaced from their natural environment and cultured in

high densities providing ideal conditions for the emergence and

spread of disease.84–86 Most, if not all, diseases of farmed fish origi-

nate in wild populations. However, aquaculture settings create ideal

conditions (e.g., high host densities) for pathogen amplification and

the spillback to wild fish populations. For sea lice (Lepeophtheirus sal-

monis) in the northern hemisphere, particularly Norway, this creates a

vicious circle of increasing disease risk. Strict regulations are in place

to protect wild fish by forcing farmers to keep sea lice levels low,

increasing treatment frequency. This, in turn, causes stress and

increases host susceptibility to infectious diseases, which generally

originate in wild fish populations in the first place. These infectious

diseases are then amplified and spill-back to wild fish, and this has

contributed to a continuous emergence of viral diseases in aquacul-

ture.87,88 To make matters worse, sea lice have also become resistant

to most available chemical antiparasitic treatments,89 increasing the

use of alternative methods involving mechanical and thermal delous-

ing technologies, leading to poor mucosal health (skin and gills)

favouring the emergence of opportunistic pathogens.89–91

4 SAMSING and BARNES
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Novel viral challenges are also contributing to secondary opportu-

nistic bacterial infections and disease syndromes.87 For example, scale

drop disease syndrome is a novel disease affecting farmed barramundi

(Lates calcarifer) in Southeast Asia. The disease is believed to be

caused by a novel Megalocytivirus, but histopathological observations

in both naturally and experimentally infected fish suggested the

involvement of toxins produced by opportunistic V. harveyi.92 Simi-

larly, Tilapia lake virus (TiLV), a novel orthomyxo-like RNA virus, has

recently been reported to cause infection in cultured and wild tilapia

globally, and co-infection between TiLV and other bacterial patho-

gens, including opportunistic agents such as Streptococcus agalactiae93

and Aeromonas veronii,94 contributes to higher mortality. Using con-

trolled infection models, Lukman et al.93 demonstrated that signifi-

cantly higher cumulative mortalities were recorded for co-infected

tilapia (73% for S. agalactiae-TiLV) compared to single infection (40%

for TiLV and 20% for S. agalactiae). To date, no therapeutics or com-

mercial vaccines exist for TiLV disease control.95 Therefore, similar to

the POMS example above, and using the causal pie model framework,

a more comprehensive understanding of co-infections will open new

avenues to promote fish health. These may include traditional hus-

bandry practices targeting component causes of the causal pie such as

reducing bacterial loads by ensuring optimal water quality96 or using

low levels of oxidising agents for temporary water quality improve-

ment.97 By further capturing epidemiological data and mechanisms

for infectivity and virulence during co-infections, treatment regimens

may be customised for enhanced efficacy. Correctly identifying the

role of pathogens in a co-infection will allow for the appropriate and

judicious selection of antibiotics or chemical treatments. A customised

approach could also involve the development of autogenous vaccines

for local serotypes of variable pathogens98 targeting bacterial agents

contributing to the mortality induced by viral agents, such as TiLV,

reducing its burden.

The intensive farm environment has also been shown to promote

the evolution of virulence of opportunistic pathogens.99 For example,

F IGURE 1 Factors contributing to the rise of the opportunists. Factors include environmental challenges (global warming, increased
frequency and intensity of extreme weather events, environmental pollution and xenobiotics, and nutrient run-off), dietary challenges
(antinutritional factors, residues and emulsifiers in aqua feeds), production intensification challenges (increased frequency of disruptive
interventions such as parasite treatments, changing biogeography), and emerging viruses and parasites. Here, we use the term parasites to
include, for example, sea lice, amoeba, flukes and myxozoans. Damage to epithelial barrier functions (leaky barriers) mediated by environmental
stressors and feed may favour infections with commensal and environmental opportunists. Virulent strains may also emerge from opportunists
through horizontal gene transfer (HGT), recombination and mutation. In the figure, orange boxes with red borders represent effectors; red border
circles indicate effects (e.g., changes in dissolved oxygen, DO); red arrows indicate links; double headed arrows indicate a continuum with

movement in both directions and light blue boxes are labels for elements in the figure.

SAMSING and BARNES 5
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isolates of the globally distributed opportunistic pathogen Flavobacter-

ium columnare have shown increased virulence between the intake

and outlet of aquaculture farms in Finland.100 Intensive farming envi-

ronments, with high host density, are evolutionary hotspots for viru-

lence evolution in pathogen populations as they enhance transmission

and frequency of infections.100,101 Another key example is the evolu-

tion of a hypervirulent strain of the opportunistic pathogen Aeromonas

hydrophyla which has emerged as the etiologic agent of epidemic out-

breaks of motile Aeromonas septicemia in high-density aquaculture of

carp in China and catfish in the United States.102 While hosts are

alive, pathogens with high virulence tend to have higher transmission

rates than strains with low virulence. However, high virulence strains

tend to truncate infectious periods by killing their hosts, and thus,

pathogen fitness may be evolutionarily optimal at intermediate levels

of virulence.101 Disease modelling predicts that host density alters

optimal virulence because the fitness gain of increased infectivity

increases with the number of available hosts, but the fitness costs of

truncating infection does not. Consequently, increases in host densi-

ties can lead to evolutionary increases in virulence even in the

absence of a trade-off between infectivity and virulence, as high host

densities allow for the maintenance of pathogens that would other-

wise kill hosts too quickly to persist.101

F IGURE 2 Ecological classifications of human and aquatic pathogens. The model proposed by Brown et al.19 (a) is unsuitable for the aquatic
environment where there is greater interchange between host and environment, represented in (b). The term parasite in the headings refers to
the broad definition of a parasite based on the nature of the interaction with host and is carried through from Brown et al.19

F IGURE 3 Models of disease causation. (a) Sniesko's diagram was first published in a manuscript reviewing the effects of environmental
stress on outbreaks of infectious diseases of fish,43 highlighting the multicausality of diseases in aquatic systems. This model, however, falls short
in addressing the multifaceted interactions that characterise diseases arising from opportunistic pathogens, which is better captured by the causal
pie framework. (b) In this model, component causes a—l add up to sufficient causes I–III, but every sufficient cause consists of different
component causes. Component cause a, which appears in every causal pie producing the same outcome is called a necessary cause of disease.

6 SAMSING and BARNES
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6 | MANAGEMENT OPTIONS AND
POTENTIAL SOLUTIONS

Addressing the rise of opportunistic pathogens in aquaculture needs a

holistic strategy encompassing immediate and long-term solutions.

Current available interventions include vaccines, such as

whole-pathogen-inactivated vaccines, that confer immunity against

host-adapted pathogens. Vaccination strategies are effective against

bacterial pathogens, but we cannot vaccinate against all bacterial

pathogens involved in disease processes, particularly opportunistic

ones. By combining advanced genomic sequencing technologies with

strategic epidemiological surveillance, we may be able to target our

efforts towards developing vaccines against the most virulent host-

adapted pathogens. Licenced commercial vaccines, however, may take

several years to develop and register. Therefore, a solution for emerg-

ing pathogens can include the use of autogenous vaccines (or auto-

vaccines), which are custom vaccines produced from pathogens

directly isolated from affected farms on which the vaccines are subse-

quently deployed under a restricted permit (reviewed in the study by

Barnes et al.98). In terrestrial agriculture, including poultry, pig and cat-

tle farming, autogenous vaccines are already an effective control

strategy against bacterial pathogens. Apart from the shorter develop-

ment track for autogenous vaccines, they are more efficient against

the local serotypes of variable pathogens and faster to produce and

re-formulate compared to licenced commercial vaccines. Vaccines are

not a standalone solution; they need to be part of a comprehensive

health and biosecurity strategy. This strategy should encompass bal-

anced nutrition, environmental management practices that promote

health and minimise exposure to harmful xenobiotics, and measures

to prevent the introduction of pathogens and potential opportunistic

organisms.

On the horizon, a suite of innovative solutions is emerging. In the

realm of therapeutics, quorum quenching probiotics and phage ther-

apy offer precision tools targeting specific bacterial pathogens with-

out disturbing the beneficial microbiota, albeit the complex

evolutionary melting pot of the aquatic biome is still poorly under-

stood. Adding more genetic material into this could send opportunists

either way along the evolutionary parasite-mutualist continuum, and

this conundrum has not been fully considered. Gene-editing technol-

ogy clustered regularly interspaced short palindromic repeats

(CRISPR) opens avenues for creating disease-resistant fish strains,103

although challenges remain in shrimp.104 The CRISPR/Cas9 system

can also be used for genome editing of bacterial species to accelerate

the development of improved vaccination strategies. Live attenuated

bacterial vaccines are known to have higher and longer protective

efficacy compared with killed bacterial vaccines, yet the process of

attenuation can be laborious and time-consuming.105 CRISPR/Cas9

systems could, therefore, be used to generate attenuated auxotrophic

mutants of pathogenic bacterial strains by efficiently editing their

genomes in a process that is much simpler and faster than conven-

tional allelic exchange methods.

Furthermore, the integration of artificial intelligence (AI) for preci-

sion farming allows for real-time monitoring and predictive modelling,

improving the timeliness and efficacy of interventions. The application

of AI to feeding technology has the potential to be a game-changer

for health and sustainability in the aquaculture industry. At present,

fish are basically fed either artificially or automatically by quantita-

tively supplying feed at definite time intervals, which can easily result

in under-feeding or over-feeding. This reduces water quality and

favours poor health outcomes, but also increases feed waste and the

environmental impact of the industry. More advanced aquaculture

systems have underwater cameras with human operators that can tai-

lor feeding regimes to the feed response observed in real-time. This,

however, can also result in issues with under-trained staff or reduced

visibility in underwater cameras. The deployment of precision feeding

technologies using AI to simultaneously integrate the information

from underwater cameras and other sensors deployed on farm, such

as acoustic technology to monitor the position of fish in the water col-

umn in response to feed, (reviewed in the study by Li et al.106) could

not only reduce feed waste but also provide early warning systems

for disease outbreaks. In countries where cutting-edge technologies

remain unaffordable, telehealth or remote veterinary services deliv-

ered via telecommunications, which expanded significantly in human

medicine following the COVID-19 pandemic, could be extended to

aquatic veterinary medicine. This approach could be particularly bene-

ficial for remote areas or developing aquaculture industries in low- to

middle-income countries.

Compelling as the current data may be, corroborative evidence

from diverse sectors is essential to validate the rise of opportunistic

pathogens and to ascertain its status as a global trend. The rise of the

opportunists observed in aquatic environments could also be associ-

ated with increased detection. As surveillance intensifies and diagnostic

methods improve, are we simply detecting diseases more frequently,

thus skewing our perception of their true increase? In the interim, it is

imperative to scrutinise the underlying factors contributing to this rise.

Application of causal pie models to outbreak investigation will help to

identify often ignored underlying contributory factors to aquatic animal

morbidity. Reflecting on these challenges is not merely an academic

exercise; by doing so, we can devise interventions and improve envi-

ronmental regulation to reduce the incidence of opportunist infections

and safeguard an industry integral to global food security and the eco-

nomic well-being of communities worldwide.

7 | GLOSSARY

7.1 | Disease

Etymology: French Desaise; Middle English Disease. Not at ease,

inconvenienced. Definition of disease is neither easy nor is any defini-

tion static. Scully107 concisely describes the changing nature of dis-

ease definition and some of the socioeconomic and scientific drivers

of this continuing flux, and some of its consequences. The World

Health Organisation (WHO) does not define disease per se, but does

carry an updated list of disease classification, the International Dis-

ease Classification (currently ICD-11). WHO does define health as ‘a
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state of complete physical, mental and social wellbeing and not merely

the absence of disease or infirmity’. In the livestock space, the World

Organisation for Animal Health (formerly OIE) does not define disease

in its Animal Health Codes (aquatic and terrestrial). For our purposes

then, invoking the causal pie model, opportunistic bacterial infectious

disease is a deviation from normal health for the age of animal where

infection by one or more bacterial strains is a necessary cause of the

deviation.

7.2 | Infection

Etymology. Latin Infectia, dipped in dye, stained or tainted. A good

definition is provided by Méthot and Alizon108 in which the infection

or host–parasite interaction comprises ‘an interactive and dynamical

biological system whose outcome is indeterminate and depends

largely on the ecological context’. This captures very eloquently the

diversity in the nature, fluidity and outcome of the interaction

between two organisms.

7.3 | Parasite

Etymology. Prefix: Greek para, alongside, Suffix Greek sitos grain or

food. One who feeds alongside. An organism that derives resources

from its host decreasing the host's fitness. From ancient Greek refer-

ring to one who dines without bringing food, the modern term para-

site captures an organism that exploits a host. In essence, anything

from a virus to a fig may be parasitic in its relationship with another

organism and therefore a parasite. In the veterinary and medical cases

and literature, parasites are often constrained to protozoa, helminths

and other invertebrate eukaryotes. In the present manuscript, we gen-

erally adhere to the full breadth of the definition centred on the

nature of the relationship between the organisms (e.g., bacteria) and

their hosts, but we refer more specifically to Eukaryotic parasites

where this is what we mean (e.g., sea lice, flukes and gill amoeba).

7.4 | Pathogen

Etymology. Prefix Greek Pathos, suffering/sorrow. Suffix Greek, Gene-

sis, birth, origin. An organism that causes pathology or virulence in the

infected host. There is complexity here, which we cover in the manu-

script. One interesting point of discussion that is not covered is the

concept of certain mobile genetic elements as the true pathogens

behind many well-known diseases. In the study reviewed by Keen,109

there are many supportive examples of the inclusion of mobile genetic

elements (MGE) as ‘pathogenic’ where host bacteria are generally

benign unless infected and expressing particular phage or transposon-

related MGE. Perhaps in the marine environment, V. cholera is the

best-known example where infection by the Cholera Toxin Phage

(CTXφ) bacteriophage is necessary for the expression of the cholera

toxin and therefore the development of disease.

7.5 | Virulence

Etymology. Latin Virulentia poison; Virulentus full of poison. The ety-

mology of virulence suggests that it is a quantitative state of the

(infected) host. Returning to the review by Méthot and Alizon,108 vir-

ulence is described as one of the possible outcomes of a host–

parasite interaction. Their definition founded in evolutionary ecology

states that virulence is a quantitative trait that measures the

decrease in host fitness due to an infection108 and is therefore con-

sistent with the etymology in that virulence is a quantitative status

related to the fitness of the host. In the microbiological literature,

virulence is commonly used to describe the capability of an infecting

organism to damage (reduce the fitness of) the host during an inter-

action and is, therefore, a trait associated with the pathogen. Use of

the term in either context would appear to be acceptable without

any loss of clarity.
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